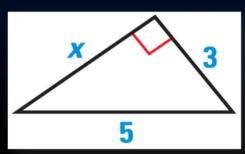
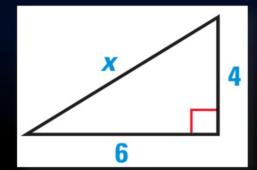
Right Triangle Trigonometry

Geometry Chapter 7

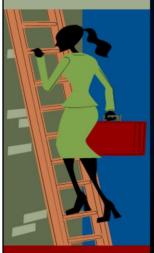
Geometry 7


- This Slideshow was developed to accompany the textbook
 - Larson Geometry
 - By Larson, R., Boswell, L., Kanold, T. D., & Stiff, L.
 - 2011 Holt McDougal
- Some examples and diagrams are taken from the textbook.


Slides created by Richard Wright, Andrews Academy rwright@andrews.edu

Pythagorean Theorem

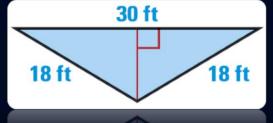
In a right triangle, $a^2 + b^2 = c^2$ where a and b are the length of the **legs** and c is the length of the **hypotenuse**.

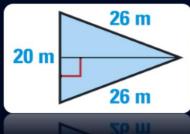

Find the value of x

$$32 + x2 = 52$$
$$9 + x2 = 25$$
$$x2 = 16$$
$$x = 4$$

$$6^{2} + 4^{2} = x^{2}$$
$$36 + 16 = x^{2}$$
$$52 = x^{2}$$
$$x = 2\sqrt{13}$$

■ The top of a ladder rests against a wall, 23 ft above the ground. The base of the ladder is 6 ft away from the wall. What is the length of the ladder.


$$23^{2} + 6^{2} = x^{2}$$


$$529 + 36 = x^{2}$$

$$565 = x^{2}$$

$$x = 23.77 ft$$

■ Find the area of the triangle

Use pythagorean theorem to find height: $15^2 + h^2 = 18^2$

$$225 + h^2 = 324$$

$$h^2 = 99$$

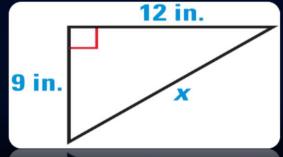
$$h = 3\sqrt{11}$$

$$A = \frac{1}{2}bh = \frac{1}{2}(30)(3\sqrt{11}) = 45\sqrt{11} = 149ft^2$$

Find height: $10^2 + h^2 = 26^2$

$$100 + h^2 = 676$$

$$h^2 = 576$$


$$h = 24$$

$$A = \frac{1}{2}(20)(24) = 240m^2$$

- Pythagorean Triples
 - A set of three positive integers that satisfy the Pythagorean Theorem

/			
3, 4, 5	5, 12, 13	8, 15, 17	7, 24, 25
6, 8, 10	10, 24, 26	16, 30, 34	14, 48, 50
9, 12, 15	15, 36, 39	24, 45, 51	21, 72, 75
30, 40, 50	50, 120, 130	80, 150, 170	70, 240, 250
3x, 4x, 5x	5 <i>x</i> , 12 <i>x</i> , 13 <i>x</i>	8 <i>x</i> , 15 <i>x</i> , 17 <i>x</i>	7x, 24x, 25x

Use a Pythagorean Triple to solve

■ 436 #4-34 even, 40-50 even = 22

Triple is 9, 12, 15 x = 15

Answers and Quiz

- 7.1 Answers
- 7.1 Homework Quiz

7.2 Use the Converse of the Pythagorean Theorem

Converse of the Pythagorean Theorem

If $a^2 + b^2 = c^2$ where a and b are the length of the short sides and c is the length of the **longest side**, then it is a right triangle.

- Tell whether a triangle with the given sides is a right triangle.
- $-4,4\sqrt{3},8$

$$4^{2} + (4\sqrt{3})^{2} = 8^{2}$$

$$16 + (16)(3) = 64$$

$$16 + 48 = 64$$

$$64 = 64$$

Yes

7.2 Use the Converse of the Pythagorean Theorem

If c is the longest side and...

$$c^2 < a^2 + b^2 \rightarrow$$
 acute triangle
 $c^2 = a^2 + b^2 \rightarrow$ right triangle
 $c^2 > a^2 + b^2 \rightarrow$ obtuse triangle

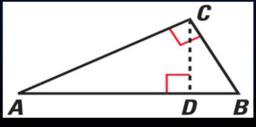
- Show that the segments with lengths 3, 4, and 6 can form a triangle
- Classify the triangle as acute, right or obtuse.
- 444 #2-30 even, 33, 38, 40, 44-52 even = 23
- Extra Credit 447 #2, 8 = +2

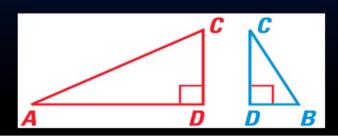
$$3 + 4 > 6$$

 $7 > 6$

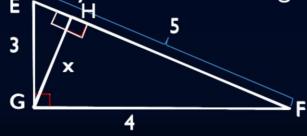
$$3^{2} + 4^{2} ? 6^{2}$$

 $9 + 16 ? 36$
 $25 < 36$


obtuse

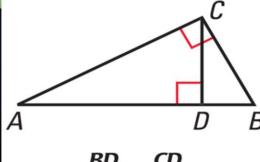

Answers and Quiz

- 7.2 Answers
- 7.2 Homework Quiz


If the altitude is drawn to the hypotenuse of a right triangle, then the two triangles formed are similar to the original triangle and to each other.

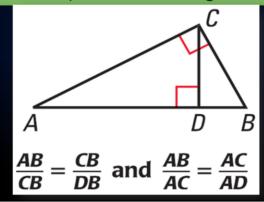
ΔCBD ~ ΔABC, ΔACD ~ ΔABC, ΔCBD ~ ΔACD

□ Identify the similar triangles. Then find x.

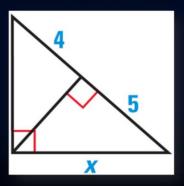

ΔEFG ~ ΔGFH ~ ΔEHG

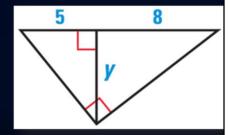
$$\frac{GH}{EG} = \frac{GF}{EF}$$

$$\frac{x}{3} = \frac{4}{5}$$


$$x = \frac{12}{5}$$

If the altitude is drawn to the hypotenuse of a right triangle, then the altitude is the geometric mean of the two segments of the hypotenuse.




$$\frac{BD}{CD} = \frac{CD}{AD}$$

If the altitude is drawn to the hypotenuse of a right triangle, then each leg is the geometric mean of the hypotenuse and the segment of the hypotenuse adjacent to that leg.

 \blacksquare Find the value of x or y.

■ 453 #4-26 even, 30-34 even, 40-48 even = 20

$$\frac{x}{9} = \frac{5}{x}$$

$$x^2 = 45$$

$$x = 3\sqrt{5} = 6.708$$

$$\frac{y}{5} = \frac{8}{y}$$

$$y^2 = 40$$

$$y = 2\sqrt{10} = 6.325$$

Answers and Quiz

- 7.3 Answers
- 7.3 Homework Quiz

7.4 Special Right Triangles

Some triangles have special lengths of sides, thus in life you see these triangles often such as in construction.

7.4 Special Right Triangles

45°-45°-90°

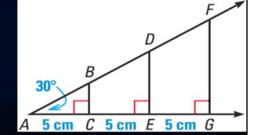
- If you have another 45°-45°-90° triangle, then use the fact that they are similar and use the proportional sides.
- The leg of one 45° - 45° - 90° triangle is 10. Find the lengths of the other sides.

ANS: other leg is 10, and hypotenuse is found by $10/1 = x/\sqrt{2} \rightarrow x = 10\sqrt{2}$

7.4 Special Right Triangles

30°-60°-90°

- The hypotenuse of a 30° - 60° - 90° is 4. Find the lengths of the other sides.
- 461 #2-20 even, 24, 28, 30, 36-38 all, 40, 42-44 all = 20
- Extra Credit 464 #2, 4 = +2

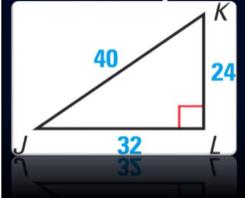

ANS: 2 and $2\sqrt{3}$

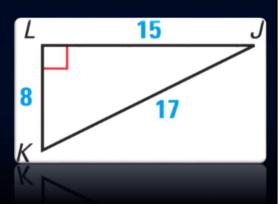
Answers and Quiz 7.4 Answers 7.4 Homework Quiz

- Draw a large 30° angle.
- On one side, draw a perpendicular lines every 5 cm.
- Fill in the table

Triangle	Adjacent leg	Opposite leg	Opposite leg Adjacent leg
$\triangle ABC$	5 cm	?	?
△ADE	10 cm	?	?
$\triangle AFG$	15 cm	?	?

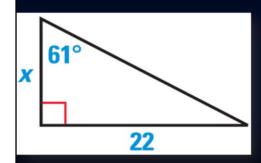
• Why are
$$\frac{BC}{DE} = \frac{AC}{AE}$$
 and $\frac{BC}{AC} = \frac{DE}{AE}$?

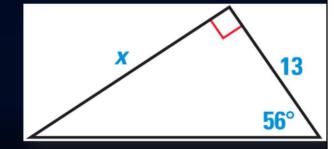



The triangles are similar by AA similarity

- Tangent ratio

■ Find tan J and tan K.





$$\tan J = \frac{24}{32} = \frac{3}{4}$$
$$\tan K = \frac{32}{24} = \frac{4}{3}$$

$$\tan J = \frac{8}{15}$$
$$\tan K = \frac{15}{8}$$

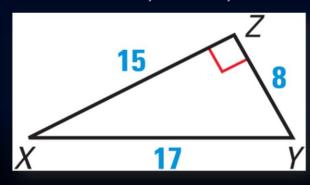
■ Find the value of x. Round to the nearest tenth.

■ 469 #4-28 even, 32, 36-46 even = 20

$$\tan 61^\circ = \frac{22}{x}$$

$$x \tan 61^\circ = 22$$

$$x = \frac{22}{\tan 61^\circ} = 12.2$$


$$\tan 56^{\circ} = \frac{x}{13}$$
13 \tan 56^{\circ} = x = 19.3

Answers and Quiz 7.5 Answers 7.5 Homework Quiz

SOH = Sine Opposite Hypotenuse CAH = Cosine Adjacent Hypotenuse TOA = Tangent Opposite Adjacent

■ Find sin X, cos X, and tan X



$$\sin X = \frac{8}{17}$$

$$\cos X = \frac{15}{17}$$

$$\tan X = \frac{8}{15}$$

■ Find the length of the dog run (x).

$$\sin 35^\circ = \frac{11}{x}$$

$$x \cdot \sin 35^\circ = 11$$

$$x = \frac{11}{\sin 35^\circ} = 19.2 ft$$

- Angle of Elevation and Depression
 - Both are measured from the horizontal
 - \blacksquare Since they are measured to || lines, they are =

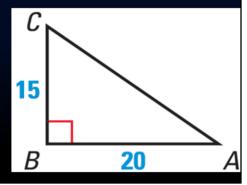
■ The angle of elevation of a plane as seen from the airport is 50°. If the plane's 1000 ft away, how high is plane?

■ 477 #2-30 even, 34, 36, 42-48 even = 21

$$\sin 50^{\circ} = \frac{x}{1000}$$
$$1000 \cdot \sin 50^{\circ} = x$$
$$x = 766ft$$

Answers and Quiz 7.6 Answers 7.6 Homework Quiz

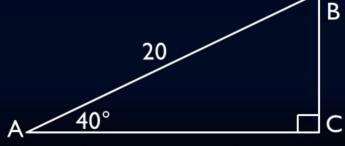
- Solve a triangle means to find all the unknown angles and sides.
 - Can be done for a right triangle if you know
 - 2 sides
 - I side and I acute angle
 - Use sin, cos, tan, Pythagorean Theorem, and Angle Sum Theorem


- Inverse Trigonometric Ratios
 - Used to find measures of angles when you know the sides.

$$\sin^{-1}\frac{opp}{hyp} = \theta$$

$$\cos^{-1}\frac{adj}{hyp} = \theta$$

$$an^{-1} \frac{opp}{adj} = \theta$$


- Find $m \angle D$ to the nearest tenth if $\sin D = 0.54$
- Find $m \angle C$ to the nearest tenth.

$$D = \sin^{-1} 0.54 = 32.7$$

$$C = \tan^{-1} \frac{20}{15} = 53.1$$

Solve a right triangle that has a 40° angle and a 20 inch hypotenuse.

- 485 #2-28 even, 32-38 even, 43, 44-48 even = 22
- Extra Credit 489 #2, 4 = +2

$$40^{\circ} + B + 90^{\circ} = 180^{\circ}$$

 $B = 50^{\circ}$

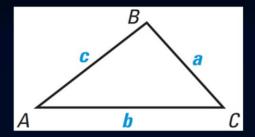
$$\cos 40^{\circ} = \frac{AC}{20}$$

 $AC = 20\cos 40^{\circ} = 15.3$

$$\sin 40^{\circ} = \frac{BC}{20}$$
 $BC = 20 \sin 40^{\circ} = 12.9$

Answers and Quiz

- 7.7 Answers
- 7.7 Homework Quiz


7.Extension Law of Sines and Law of Cosines

- Tangent, Sine, and Cosine are only for right triangles
- Law of Sines and Law of Cosines are for any triangle

7.Extension Law of Sines and Law of Cosines

■ Law of Sines

$$\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$$

- Used if you know
 - AAS,ASA, SSA

Only use two of the ratios at a time.

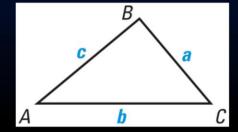
7. Extension Law of Sines and Law of **Cosines**

How much closer to school does Jimmy live than Adolph?

Find x:
$$\frac{\sin 102^{\circ}}{3} = \frac{\sin 17^{\circ}}{x}$$

$$x \cdot \sin 102^{\circ} = 3 \cdot \sin 17^{\circ}$$

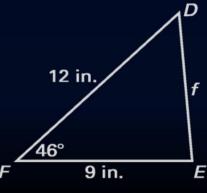
$$x = \frac{3 \cdot \sin 17^{\circ}}{\sin 102^{\circ}} = 0.897$$
Find $\angle J$: $\angle J = 180^{\circ} - 102^{\circ} - 17^{\circ} = 61^{\circ}$
Find y: $\frac{\sin 102^{\circ}}{3} = \frac{\sin 61^{\circ}}{y}$

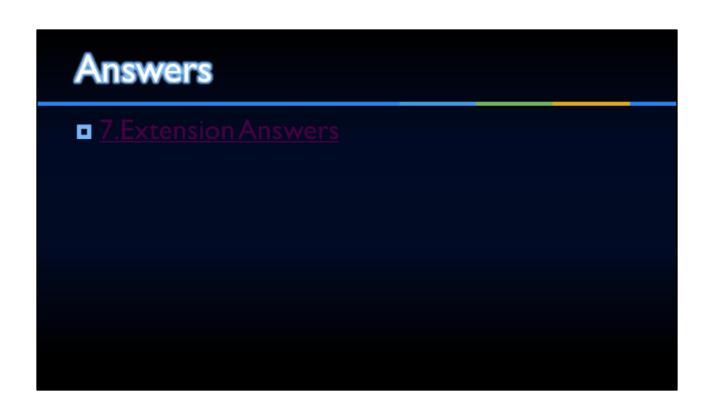

$$y \cdot \sin 102^{\circ} = 3 \cdot \sin 61^{\circ}$$

$$y = \frac{3 \cdot \sin 61^{\circ}}{\sin 102^{\circ}} = 2.682$$
Subtract: $2.682 - 0.897 = 1.785$ miles

Subtract: 2.682 - 0.897 = 1.785 miles

7.Extension Law of Sines and Law of Cosines


- Law of Cosines
 - $a^2 = b^2 + c^2 2bc \cos A$
 - $b^2 = a^2 + c^2 2ac \cos B$
 - $c^2 = a^2 + b^2 2ab \cos C$
- Use when you know
 - SSS, SAS


7.Extension Law of Sines and Law of

Cosines

■ Find f to the nearest hundredth.

$$f^{2} = 9^{2} + 12^{2} - 2 \cdot 9 \cdot 12 \cdot \cos 46^{\circ}$$
$$f^{2} = 74.9538$$
$$f = 8.66 in$$

####